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Beam and elasticity theory have been applied to the deformation observed to occur when a model 
adhesive joint is exposed to water. The adhesive joint is comprised of a thin microscope cover 
slip/adhesive layer/rigid substrate sandwich. 

The presence of damped normal displacement waves in the cover slip, predicted to exist in the 
joint in regions of negligible water concentration, has been confirmed by measurements on 
photographs of interference patterns generated with an optical interferometer. 

A “theory assisted” fit for the normal displacement has led to an improved fourth derivative, 
and this has enabled a better estimate to be made for the distribution of normal swelling stress. 

I NTRO D U CTlO N 

The swelling inhomogeneity that occurs when a resin adhesive absorbs water 
may be conveniently demonstrated by making model joints consisting of an 
adhesive layer sandwiched between a rigid substrate and a flexible microscope 
cover slip. If such a joint is used as one of the components of an interferometer, 
the resulting interference pattern may,be analysed to give information about 
the deformation of the cover slip and hence of the swelling stresses. The 
experimental technique, reported by Sargent and Ashbee,’ makes use of 
photographs of the interference pattern to generate Moire patterns in order 
precisely to follow the development of swelling in the adhesive layer. 

A consequence of the inhomogeneous swelling is the development of a stress 
field within the adhesive. An estimate of the stresses generated normal to the 
joint has been made in Ref. 1 by graphically differentiating the normal 
displacement profiles and applying equations due to Love.’ 

The purpose of the research reported here is to make a theoretical 
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examination of the displacement profiles previously reported and to obtain an 
improved method for obtaining the fourth differential of these displacement 
profiles with the object of more accurately calculating the resulting stress field 
across the adhesive joint. 

The procedure adopted is to modify the equations of linear elasticity so as to 
include effects due to the presence of water molecules, and to apply beam 
theory to the cover slip in order to obtain a differential equation relating the 
observed displacements to the pressure acting across the surface of the cover 
slip. Then, by considering boundary conditions, relations can be obtained that 
enable a functional form for the measured displacement data to be derived. 

THE DEFORMATION OF THE COVER SLIP 

The equations of linear elasticity relating the stress tensor aij to the strain 
tensor uij, modified to take into account the pressure due to the presence of 
water molecules in the resin, are of the form 

oij = 2puij  + Adijuii - C(r)dij(3A + 2 p )  (1) 

where p and 1 are Lam6 coefficients related to Young’s modulus E and 
Poisson’s ratio v by the two equations 

E vE 
p=- a.= 

2(1 + v)  (1 + v ) ( 1 - 2 v )  

and 

x (a material constant) 
the water concentration at position 
vector r as shown in Figure 1 

C(r) = 

The boundary conditions governing the displacement vector U for the 

1) U ,  = 0 at the surfaces defined by y = 0 and y = L. This is consistent with 

2)  U,, = 0 at the surface defined by y = 0. This is consistent with the 

A suitable ansatz for U consistent with the above boundary conditions is 

specimen shown in Figure 1 are 

the assumption of a firm bond at the resin/glass interface. 

assumption that the substrate is acting as a rigid constraint. 

u = ( Y W  - Y)f(X) ,  Y&)> 0) ( 2 )  
Since the pressure on the surface of the cover slip, P ( x )  is given by -cry,, I y = L 
then 

P ( x )  = (3A + 2p)C(x)  - (a. + 2p)g(x)  (3) 
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FIGURE 1 
dimensions. 

A cross-section of the specimen defining the orientation of the space axes and 

I 
I 
I 

Defining the observed normal displacement of the cover slip as W(x) then an 
additional boundary condition can be written 

U ,  = yg(x) = W(x) at y = L 

hence 

Y(X) = W(X)/L 
Substituting this in Eq. (3) gives 

P(x) = (31+2p)C(x)-(A+2p)W(x)/L (4) 

Application of beam theory to the cover slip gives #a differential equation 
relating the observed displacement W(x), to the pressure on the surface of the 
cover slip P(x). 

Love’s result2? for the bending of thin plates is 

d2W(x) - 12(1 -y;)M(x) 
- 

dx2 E G G  

where M(x), E,, yG and L, are the bending moment, modulus, Poisson’s ratio 
and thickness of the glass cover slip respectively. 

Since P(x) = d2M(x)/dx2 then 

d4W(x) - 12(1 -yi)P(x) 
- 

dx4 EGG 

c o v e r  sl ip 
/ / /  / 

/I adhe$ive 

t Analysis by Cottingham and Jesson3 has shown that this equation is the first term of a series. A 
discussion of the errors introduced in using this result is given in the appendix. 

- - - - - - - - 
L = O I m m  
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122 D. E. JESSON AND J. P. SARGENT 

Substitution into Eq. (4) gives 

-- - I2(l -,yz-){(31+ 2p)C(x)-(1+2p)W(x)/L) (5 )  
d4 W(x) 

dx4 EGLG 
which is valid for all x except in the region near x = 0, due to edge effects. 
However, since 1 and p vary with water concentration, this equation is difficult 
to use in this form. Consider therefore the region of the resin where the water 
front has not yet penetrated, i.e., the region towards the centre of the specimen. 
Hence C ( x )  z 0 and the elastic constants il and p assume their dry values. 
Equation (5 )  then reduces to 

Noting that W(x)  -, 0 as xis large, then the solution can be written in the form 

where C is a constant 
W(x)  = C exp( - 4x) sin [4(x + d) ]  (7) 

d = nnJ24 

Thus, an important consequence of the theory is the prediction of damped 
waves of normal displacement in the region of negligible water concentration. 
The predicted waves are sketched in Figure 2. 

FIGURE 2 The predicted damped normal displacement waves. 
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FIGURE 3 The normal displacement for the specimen from Figure 4 showing the damped 
normal displacement waves. 

Figure 3 shows the results of a radial microdensitometer scan across the 
interference pattern reproduced from reference 1 in Figure 4. The specimen 
had undergone 4 hours exposure to distilled water at 60°C. The initial 
depression and first wave are clearly resolved. The height of the first peak is 
approximately 1/26 of the initial depression (v), which is in good agreement 
with the theoretical prediction of Figure 2. It may be noted that the amplitude 
of the damped wave in this instance is approximately L/30, which is below the 
limit of resolution directly obtainable using the Moiri technique. 

A FUNCTIONAL REPRESENTATION OF THE FOURTH 
DERIVATIVE 

To a good approximation the initial slopes of the empirical normal 
displacement waves may be taken as constant. Thus for small values of x, the 
curves may be described by the straight line 

W(x) = - ax/S + c1 (8) 
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124 D. E. JESSON AND J. P. SAKGENT 

FIGURE 4 An interference pattern for a square specimen manufactured from FMlOOO after 4 
hours exposure to distilled water at 60°C. After Sargent and Ashbee.' 

where ct and 0 are intercepts on the W(x) and x axes respectively. 
The solution of Eq. (6) suggests that W(x) is of the general form 

W(x) = ct exp(-x)(1+ax+bx2+cx3+. . - )  (9) 

which together with the conditions that 

- 0  
d2 W(0) d3 W(0) 
-=O and -- 

dx2 dx3 

obtained from the application of beam theory to the cover slip, impose 
additional limitations on the second and third derivatives of the functional 
form of W(x),  namely that each must vanish at x = 0. 

Defining x = a/fl as the initial gradient of a particular displacement curve, 
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DEFORMATION OF ADHERENDS IN WATER UPTAKE 125 

equation 9 may be rewritten as 

W(x) = exp(-x) [a+(a-x)x+(a/2-x)xz +(a/6-x/2)x3] (10) 
for terms up to and including x3. 

This expression represents only the first few terms of an expansion and so, to 
complete the fit, it is necessary to add a higher order term zx" with n > 3. 
Equation (10) then becomes 

W(x) = exp( - x) [ a  +(a - x)x + ( 4 2  - x)x2 + ( 4 6  - x/2)x3 + zx"] (1 1) 

If a parameter xo is introduced as the value of x at which the normal 
displacement curve intercepts the x-axis, then the coefficient T ensures that the 
functional representation is identically zero if 

where W(x,) is expression (10) evaluated at xo. 
Estimating a, x and xo from the displacement data and computing values of 

W(x) for different values of n, it is found that the best fit is achieved for n = 5. 
The final form is therefore 

W,(x) = exp( - x) [a  +(a - x)x + (a/2 - x)x2 + (046 - x/2)x3 + sx5] (12) 

Equation (12) can then be differentiated four times to give the fourth derivative 
of displacement 

W'" = exp(-x)[(4~-cc)+(3a-11~) 

+ (5x - 3a/2)x2 + (a/2 - x/2)x3 + 5(x)] (1 3) 
where 

t(x) = - z(x5 - 2oX4 + 120x3 - 240~2  + 1 2 0 ~ )  

Figure 5 shows a comparison between a plot of W'"(x) obtained using Eq. (13) 
and the graphical differentiation result employed in Ref. 1 for a time of 
immersion in distilled water at 60°C of 11 hours. 

It has been shown that W'"(x) is a measure of the pressure exerted on the 
cover slip, thus, an interesting feature of the functional form of W'"(x) is the 
prediction of negative pressures for small x. Physically this is understood by 
considering the pressures exerted on the cover slip as a function of time by the 
waterfront as it progresses into the resin. This is shown in Figure 6. In practice, 
this behaviour eventually leads to debonding between the adhesive and cover 
slip at the edge of the specimen. 

At smaller times, when there has been insufficient water uptake for the 
adhesive layer to saturate at the edges, we would expect the initial negative 
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3 

0 2 4 

Distance across diameter, x ( m m )  

( 8 )  
FIGURE 5a 
5b 
distribution. 

The functional form of the fourth derivative for an immersion time of 11 hours. 
The form of W'"(x) obtained by graphical differentiation together with the normal stress 

excursion in W'"(x) to vanish, which is indeed the case. This is shown in Figure 
7 where the functional form of W'"(x) is plotted for an immersion time of 1/4 
hour. 

CONCLUSIONS 

The application of beam and elasticity theory to the swelling of an adhesive 
joint consisting of a flexible cover slip/adhesive layer/rigid substrate when 
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DEFORMATION OF ADHERENDS IN WATER UPTAKE 127 

cover slip 

wet adhesive 

0 d r y  adhesive 

r ig id  substrate 

FIGURE 6 A schematic explanation for the form of the W'"(x) curve in Figure 5a. In regions 1 
and 3 the cover slip is pulled down by dry and saturated regions of the resin. This counteracts the 
upward stress exerted in region 2 due to the pressure of the waterfront. 

subjected to moisture absorption has resulted in the following : 

1) A n  unexpected negative displacement of the cover slip. This is observed 
experimentally. 

2) Damped normal displacement waves. These have also been observed in 
the experimental data. 

3) A "theory assisted fit for the normal displacement W(x).  This has 
facilitated the calculation of an improved fourth derivative and hence of a 
better estimate for the distribution of normal swelling stress. 

r ig id  substrate 

FIGURE 7 The W'"(x) curve for a smaller immersion time of $ ~ hour together with a schematic 
explanation for its form. 
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APPENDIX 

Reference to Cottingham and Jesson3 shows that in Fourier space 

- A ( K )  = ~ " I K "  [ 6 ( K ) ] f & ( K )  
12 

where 

It is shown that the Airy Stress function A(x)  is equivalent to the bending 
moment of the beam M(x) ,  and that if",(K) can be related to the normal 
displacement of the cover slip such that a modified form of Love's result taken 
up to 2 terms is 

wI~(x)L; E W'(X)L;E 
M ( x )  = + 

60( 1 - v') 12( 1 - v2) 

The equation of interest is therefore 

d2M(x) EL; W"(x) EL? W"'(x) + - - 
dx2 12( 1 - v') 60( 1 - v') 

An indication of the error involved in the neglect of this additional term is 
given by the fractional change in the Airy Stress function 

A"($ - A(x)  - L; W'"(x) 
44 5W"(X) 

- 

where AS(x)  is the Airy Stress function inclusive of the additional term. 
From experimental data it is found that this fractional difference can be of 

significance. However, errors in the determination of W"'(x) may introduce 
more inaccuracy than in using Love's approximation alone. 
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